Cost-Constrained Selection of Strand Wire and Number in a Litz-Wire Transformer Winding
نویسندگان
چکیده
Design of litz-wire windings subject to cost constraints is analyzed. An approximation of normalized cost is combined with analysis of proximity effect losses to find combinations of strand number and diameter that optimally trade off cost and loss. The relationship between wire size, normalized cost, and normalized loss is shown to have a general form that applies to a wide range of designs. A practical design procedure is provided. Applied to an example design, it leads to less than half the original loss at lower than the original cost, or, alternatively, under one fifth the original cost with the same loss as the original design.
منابع مشابه
Optimization of a Flyback Transformer Winding Considering Two-Dimensional Field Effects, Cost and Loss
The largest loss in an example litz-wire flyback transformer is found during current commutation between windings. In order to reduce this loss, a new optimization method is introduced. The new method optimizes strand size and number in litz wire considering cost and loss. Unlike previous methods, it is valid with twoor three-dimensional field geometry and with different non-sinusoidal waveform...
متن کاملOptimal Choice for Number of Strands in a Litz-Wire Transformer Winding
The number and diameter of strands to minimize loss in a litz-wire transformer winding is determined. With fine stranding, the ac resistance factor can be decreased, but dc resistance increases as a result of the space occupied by insulation. A power law to model insulation thickness is combined with standard analysis of proximity-effect losses to find the optimal stranding. Suboptimal choices ...
متن کاملStranded Wire With Uninsulated Strands as a Low-Cost Alternative to Litz Wire
High-frequency loss in transformer windings using stranded wire is analyzed. A complete loss prediction method is presented. The interstrand resistivity, which is an important parameter to determine the power loss, is measured experimentally. The analytical model is solved to get an optimal pitch, which specifies the degree of twisting that results in minimum loss. A transformer using a strande...
متن کاملComputationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms, and Two-Dimensional or Three-Dimensional Field Geometry
The squared-field-derivative method for calculating eddy-current (proximity-effect) losses in round-wire or litz-wire transformer and inductor windings is derived. The method is capable of analyzing losses due to two-dimensional and three-dimensional field effects in multiple windings with arbitrary waveforms in each winding. It uses a simple set of numerical magnetostatic field calculations, w...
متن کاملComputationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms and Two- or Three-Dimensional Field Geometry
The squared-field-derivative method for calculating eddy-current (proximity-effect) losses in round-wire or litz-wire transformer and inductor windings is derived. The method is capable of analyzing losses due to two-dimensional and three-dimensional field effects in multiple windings with arbitrary waveforms in each winding. It uses a simple set of numerical magnetostatic field calculations, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009